Resistance of SAF Materials to Automotive Chemicals
June 27, 2024SAF Lab 101: From Clueless to Genius in No Time: Welcome to SAF Lab 101
July 23, 2024Case Study
Gulf Wind Technology

Catching a Wind for a Greener Future How Gulf Wind Technology Pushes Wind Energy Forward with the Help of 3D Printing
You’ve probably seen them sprouting from the landscape or seashore. The white rotors of these modern-day windmills slowly turn in hypnotic unison, making it hard to believe wind turbines produce much electricity. But that is their sole purpose, and they do it well. According to the U.S. Energy Information Administration, a typical wind turbine installed in 2020 creates enough electricity in 46 minutes to power the average U.S. home for one month. That kind of power generation wouldn’t be possible, however, without the turbine’s rotors – the blades or airfoils – that harness the power of the wind.
Airfoil Design Challenges
The technology and engineering behind these expansive wing-like appendages are the expertise of Gulf Wind Technology, a company dedicated to developing rotor design solutions to address current wind turbine limitations and future needs. And like any technology, advancements are often borne out of a desire to improve the status quo or to solve a problem.
To illustrate, the U.S. Gulf Coast presents wind turbine manufacturers with several challenges. Wind velocities are highly variable, ranging from very light to hurricane-force. To find a solution, Gulf Wind Technology partnered with a leading energy company with interests in the region to develop solutions to allow wind turbines to work effectively in both conditions. The resulting collaboration formed the Gulf Wind Technology Accelerator, the most advanced rotor innovation center in the U.S., which utilizes a state-of-the-art technology facility.
But how do you design, validate, and test rotors that can be longer than an American football field? Computational fluid dynamics analysis offers a starting point, which provides a theoretical model. However, validating the mathematical model typically requires wind tunnel tests using scaled-down rotor models. These models are usually CNC machined or formed with a carbon-fiber lay-up applied over a mold. According to Gulf Wind Technology senior product developer Joe Lotuaco, “we’re given a problem statement, and then we’ll scale it down, investigate it, and develop solutions.